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Abstract 

Controller design for a spacecraft mounted flexible antenna is considered.  The 

antenna plant model has a certain degree of uncertainty.  Additionally, disturbances from 

the host spacecraft are transmitted to the antenna and need to be attenuated.  The design 

concept explored herein entails feedforward control to slew the antenna.  Feedback 

control is then used to compensate for plant uncertainty and to reject the disturbance 

signals.  A tight control loop is designed to meet performance specifications while 

minimizing the control gains.   

Simulations are conducted to show that the integration of feedforward control 

action and feedback compensation produces better responses than the implementation of 

either individual control system.  Integration results in lower gains and still meets the 

performance specifications   

Critical plant parameters are varied to simulate the uncertainty in the nominal 

plant.  The control system is then exercised on several variations of the nominal plant.  A 

worst case plant is produced as a combination of the variations to the nominal plant.  

Simulations show that when the controller is implemented on the worst case plant, 

specifications are exceeded.  The controller gains are reduced and the simulations are 

repeated so that the specifications are met but not exceeded; thus, proving that a 

reduction of plant uncertainty allows the reduction of the control gains. 
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CONTROLLER DESIGN FOR ACCURATE 

ANTENNA POINTING ONBOARD A SPACECRAFT 

I. Introduction 

1.1. Problem Statement 

 Spacecraft mounted payloads often times require very accurate tracking 

performance capabilities.  For example, a spacecraft mounted flexible antenna requires 

high accuracy and precision control to perform its mission.  The precision and accuracy 

required to achieve the desired performance typically requires the use of a high gain 

feedback control system and accurate plant knowledge. 

In the case of spacecraft applications, the plant dynamics are often difficult to 

assess because the zero-gravity environment is not easily replicated on Earth; thus 

suitable experiments can not be conducted until the spacecraft is launched in orbit.  

Therefore, the main challenge is the ability to implement a control system on a plant with 

uncertain parameters.   

The Department of Defense and the United States Air Force have taken special 

interest in the investigation of this common problem inherent in spacecraft payload 

pointing control. 

1.2. Research Focus 

 The first part of this investigation addresses the control problem for a spacecraft 

mounted flexible antenna.  Because of tight performance specifications, the typical 

controls approach is to design a feedback controller with high gains.  In addition, the 

plant parameters should be accurate; otherwise, the control system may not be able to 
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meet the performance specifications.  Again, the use of high gain feedback control 

increases the performance of the system; however, methods of reducing uncertainty in 

plant parameters can be investigated, which eases the need for high gain feedback 

control.  Classical control theory encourages the use of high gain to increase robustness 

and disturbance rejection.  However, the use of high gains is limited by both actuator 

saturation and sensor noise amplification.   

To demonstrate the limitations of the implementation of high gains consider the 

feedback control scheme shown in Fig. 1-1.  The plant transfer function is represented in 

block, P(s).  The forward loop compensator is Gc(s), and the feedback compensator is 

H(s).  The disturbance signal d1 is from motor vibrations, the disturbance signal d2 is 

from the host spacecraft vibration.  The reference signal, θr, is typically a step command 

in classical controls to show that the objective is to slew from one angle to another.  The 

use of high gains is conducive to the rejection of d1 and d2, as shown in Equations 1-1 

and 1-2.  However, the use of high gains is limited by actuator saturation, that is, a motor 

can only produce so much torque and can only increase/decrease the torque at a certain 

rate.  High gains also amplify the sensitivity to sensor noise, n, as shown in Equation 1-3. 

 
n 

θr Σ 
e 

 –  

+
+ + 

++ Gc(s) Σ P(s) θ Σ 

d2 

H(s) 

d1 

Σ 
+ 

+ 

Figure 1-1: Feedback Control System 
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 Equations 1-1 and 1-2 illustrate that the magnitude of the sensitivity transfer 

functions of d1 and d2 are reduced by increasing the gains in Gc(s) and H(s).  A lower 

magnitude of the sensitivity transfer functions is synonymous to a higher rejection of a 

disturbance signal.  To reduce notation, because S1(s) and S2(s) behave similarly, only 

S2(s) is considered further in this investigation. 

1
1

( ) ( )( )
( ) 1 ( ) ( ) ( )c s j

j P sS j
d j P s G s H s

ω

θ ωω
ω

=

=
+

     (1-1) 

2
2

( ) 1( )
( ) 1 ( ) ( ) ( )c s j

jS j
d j P s G s H s

ω

θ ωω
ω

=

=
+

     (1-2) 

 The third sensitivity function is for the sensor disturbance noise (Equation 1-3).  

A decrease in magnitude of S2(s) directly results in the increase in magnitude of S3(s) – 

herein, is the tradeoff between disturbance rejection and sensor noise amplification.  

Apart from actuator saturation, the converse relationship between disturbance rejection 

and noise sensitivity relationship shows that an increase of gains results in a higher 

sensitivity to sensor noise.  Again, since the relationship between S2 and S3 remains 

constant, only S2 will be considered in this investigation. 

3 2
( ) ( ) ( )( )( ) 1 ( )

( ) 1 ( ) ( ) ( )
c

c s j

P s G s H sjS j S j
N j P s G s H s

ω

θ ωω ω
ω

=

= =
+

−    (1-3) 

The second part of this investigation addresses the issue of plant uncertainty.  

Spacecraft dynamics are often difficult to determine on Earth because of the inability to 

mimic the space environment on Earth.  A common solution is to conduct experiments 

while the spacecraft is in orbit; from these experiments the plant parameters can be 

determined.  This method is commonly referred to as system identification (SYS ID).  
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SYS ID eliminates most of the environmental uncertainties and it can be occasionally 

repeated should the plant vary over time.  However, the SYS ID methodology itself has 

experimental uncertainties which are unavoidable.  Even the most advanced applications 

of SYS ID have limited certainty in modeling the plant.   

One approach to the uncertainty issue is to identify the error sources of 

experimental uncertainty.  By reducing the plant uncertainty – or at the very least 

defining certain bounds of uncertainty – the control system can be designed with lower 

gains since the uncertainty bounds are better defined.  Addressing the plant uncertainty is 

not covered in the scope of this investigation.  Rather, the effects of plant uncertainty on 

the control system response are studied.  The importance of bounding the uncertainty in 

plant parameters is demonstrated. 

The important issue in this investigation is the limited capabilities of designing for 

robustness due to external disturbances and plant uncertainty.  The implementation of a 

feedback controller with high gains is limited by instability, actuator saturation, and noise 

amplification.  The design problem is determining how to achieve tight performance 

specifications while minimizing the use of high gains. 

1.3. Research Objectives 

The objective of this research effort is to design a controller which meets given 

performance specifications given a nominal plant without exclusively relying on the use 

of high gains.  To ease the need for high gains, a feedforward control concept is 

evaluated.  The concept that feedforward control eases the need of high gain feedback 

compensation is evaluated.  In addition, the feedback reference signal, θr, is smoothed 
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from a step response to a continuous curve which slews the structure in a smooth and 

continuous manner.  The reference signal is the expected output of feedback control; 

therefore, by setting the output of open loop feedforward control equal to the reference 

input, the error signal to the feedback controller (integrated with feedforward control) is 

reduced during the slewing maneuver.  Additionally, The controller should be designed 

such that it is robust enough to meet the performance specifications on reasonable 

variants of the nominal plant. 

The plant model is considered to be a spacecraft mounted flexible antenna.  The 

flexible antenna is modeled similar to a torsional spring-mass-damper (SMD) system 

illustrated in Figure 1-2.  The nominal plant and its parameters are presented in Appendix 

A. 

  

Figure 1-2: Illustration of Flexible Model 

 Experiments are conducted with the designed tight control loop on variants of the 

nominal antenna plant model.  The variants are created by modifying plant parameters 

such as flexible mode frequencies, moment of inertia, and time delays.  The effects of the 

uncertainty in the plant are quantitatively defined.  Quantities such as disturbance 

attenuation, tracking error, speed of response, and gain and phase margins are considered 

as bases of comparison. 
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 The objective is to achieve performance specifications for the “worst case” plant, 

while also achieving good disturbance effect attenuation when compared to open loop 

control.  The control design methodology is inspired by the Quantitative Feedback 

Theory (QFT) control design method (D’Azzo and Houpis, 1995). 

1.4. Methodology 

 The implemented feedforward control slews the antenna from one angle to 

another.  The slewing maneuver is completed without the aid of the feedback control.  

Since the nominal plant is known, a nominal open loop response can be achieved with 

feedforward control.  The use of feedforward control allows the gains of the feedback 

controller to remain low, since the responsibility of slewing the antenna is given 

primarily to the feedforward control.  To further reduce the impact of the feedback 

controller on slewing, the reference signal, θr, is modified from a classical discontinuous 

step to match the desired open loop response.  Ideally, this reference signal gives a zero 

error signal to the feedback compensator for the duration of the slewing maneuver.  

However, since the plant is not fully known, flexible body modes may be excited in the 

structure, resulting in unwanted vibrations during the feedforward control process.  These 

vibrations will cause an error between the reference signal and the actual response, thus 

triggering feedback action.  The feedback controller assumes the responsibility of 

eliminating the error and dampening out the vibrations caused from plant uncertainty.  

Simultaneously, feedback action will also work to attenuate the disturbance signals 

introduced to the system during and after the slewing maneuver. 
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 An issue that arises is the use of feedback compensation versus forward loop 

compensation (i.e. the use of H(s) vs. Gc(s) – See Figure 1-1).  Whenever possible, 

feedback compensation should be used, since it allows the insertion of a pure zero 

without a corresponding pole into the transfer function.  Inserting a pure zero in the 

transfer function means implementing pure derivative action; physically speaking, it 

allows the data from a rate gyro to be used for the control scheme to facilitate in vibration 

damping.  Should an antenna-mounted angular accelerometer be available, the 

disturbance signal can be further anticipated and compensated accordingly to minimize 

vibration.  Only after feedback compensation is fully taken advantage of is the design of 

the forward loop compensator, Gc(s), considered. 

 The control problem being addressed is a tracking controller design problem and 

not a regulator design problem.  Cognizant of the fact that the antenna slewing maneuver 

might induce vibrations, a preliminary investigation is conducted to establish a safe 

feedforward slewing maneuver command.  The feedforward slew command is designed 

such that a smooth slewing maneuver ensues and at the conclusion of the slewing 

maneuver little residual vibrations are experienced, which requires avoiding the 

excitation of the first structural mode.  

Furthermore, in view of the parsimonious use of feedback credo, the nominal 

plant information available is used to design a filter which, in the absence of plant 

uncertainty and disturbances, will yield the desired slewing trajectory. The filter 

effectively smoothes the input reference signal, θr, to match the output of the feedforward 

slew command, such that there is minimal compensation error for the feedback 

compensator.  Hence, slewing performance is achieved using feedforward control, and 
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feedback control is exclusively tasked with addressing plant uncertainty and disturbance 

rejection. The herein envisaged control concept is illustrated in Figure 1-3. 

θr Σ 
e(s) 

 –  

+
+ +

+ + 

 

 
Gc(s) 

Gff(s) 

Σ P(s) θ Σ 

d(s) 
uff(s) 

H(s) 

Figure 1-3: Feedforward/Feedback Control Concept  
 

1.5. Preview 

 The paper is organized as follows.  Literature of previous work involving 

feedforward and feedback control is reviewed in Chapter 2.  Concepts such as optimal 

feedforward control and the design method of QFT are summarized.  Chapter 3 outlines 

the design of the feedforward controller, and the determination of the slewing maneuver 

which reduces the excitation of modes.  The design of the feedback control system is also 

discussed in Chapter 3.  The simulations of the full control system and results are 

presented in Chapter 4.  Also included in Chapter 4, are the comparisons to pure feedback 

and pure feedforward control to the combined control system.  Results of the simulations 

involving plant variations are also presented in Chapter 4.  Concluding remarks are made 

in Chapter 5. 
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II. Literature Review 

2.1. Chapter Review 

The purpose of this chapter is to provide appropriate background information for 

the concepts that have motivated this investigation.  Among such concepts are 

Quantitative Feedback Theory (QFT), torque shaping for feedforward slewing 

commands, and modal suppression in feedback control. 

2.2. Background of Flexible Structure Control 

Some typical spacecraft operations involve slewing a structure from one attitude 

at rest to another attitude, bringing it back to rest.  That is to say, at the conclusion of a 

slew maneuver, the slew rate and all of its derivatives should all be brought to zero.  The 

open loop control problem inherent in this task is to avoid excessive structural 

deformation and flexible mode excitation.  In the case of flexible structures, the problem 

becomes increasingly difficult as the magnitude of the attitude change is increased and 

the time to slew is decreased.   

The most significant problem with attempting to control a flexible structure is the 

avoidance of flexible modes.  In the simple case of a cantilever beam, several sensors are 

required along the beam to determine the shape of the modes that are excited.  For large 

flexible space structures, several sensors would be required to determine the mode shapes 

and natural frequencies.  More sensors are required to discern larger numbers of modes.  

While dealing with a large number of modes, a multi-sensor/multi-actuator strategy 

would likely be an excellent solution, since it can determine and shape the structure as 

desired.  However, the ability to observe – and consequently control – the excitation of 
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flexible modes becomes increasingly difficult and rather expensive.  Because of cost 

constraints, control systems typically have a single actuator to control the entire structure.  

The natural solution for single actuator control is to mitigate the excitation of flexible 

modes either through active feedback control to suppress the modes or feedforward 

torque shaping, which focuses on smoothing input torques to minimize the excitation of 

flexible body modes. 

2.2.1. Open Loop Control 

The equations of motion for rigid body rotation are normally described with a set 

of nonlinear ordinary differential equations with a frame of reference on the rigid body.  

Including flexible modes to the equations of motion adds an additional set of nonlinear 

partial differential equations.   The solution of this hybrid set of equations does not have a 

closed form solution (Merovitch and Quinn, 1987:302).  Thus, perturbation methods are 

normally used to find the time domain response for a given control input. 

Early research has shown that shaping the torque input to the main body of the 

structure to the following function in Equation 2-1 will satisfy the terminal and initial 

boundary conditions of the response provided that there are as many degrees of freedom 

as constraints.  The boundary conditions are that the modes and respective derivatives are 

zero, initially and at the conclusion of the maneuver.  Therefore, the more modes which 

need to be controlled, the more complex the input function becomes.  In Equation 2-1, 

M+1 is the number of modes that need to be controlled. 

(
1

1, 2,
1

( ) cos( ) sin( )n

M
t

n n n n
n

u t e g t g tσ ω
+

−

=

= +∑ )ω      (2-1) 
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Initially there are four degrees of freedom in the function u(t).  An additional 

constraint is to minimize the control effort, u(t)2.  The result is that the values of σn and 

ωn have closed form solutions as a function of the equations of motion of the structure.  

Therefore, the number of initial and final boundary conditions constraints are the same as 

the number of degrees of freedom, g1,n and g2,n (Swigurt, 1978: 1-2), and the input can be 

derived. 

Although this is the method Swigurt uses, the minimization of the control effort is 

not often the integrand used for optimization.  Often, the main focus in optimal control is 

to minimize the deflection angles (and its derivatives) of the flexible appendage.  The 

deflection angle is the difference in the angle of the appendage from the undisturbed 

appendage of main body.  This type of optimization tends to focus on the optimal slew 

maneuver profile and its derivatives rather than the control input. 

Research in minimizing the appendage deflection has shown that the product of 

the lowest structural frequency and the length of time to maneuver has a significant 

impact on the amount of excitation in the maneuver.  Specifically, when the product is 

less than 5 rad, the excitation penalty is large when the structure is attempted to be 

brought back to rest at another angle.  If the modal frequency is too low, the structure will 

be unable to keep up with the angle demanded for the rigid body; thus, at the conclusion 

of the slewing maneuver, the angular velocity is not zero and the structure is not brought 

to rest (Farrenkopf, 1979: 491-498).   

There are several other methods of “optimizing” the slew command.  Each 

research method generally chooses a quadratic cost function which minimizes control 

effort, flexible mode deflections, and/or flexible mode excitation (rate).  Markley takes a 
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strategy of finding an optimal control function by minimizing the control effort, flexible 

mode deflection, and the flexible mode excitation.  Second, Markley develops an optimal 

control to minimize just the flexible mode deflection and flexible mode excitation.  Then 

he implements a third non-optimal control function which is a polynomial in time.  All 

three solutions are compared in simulations.  Similar to Farrenkopf, Markley found that 

the mode excitations were heavily dependent on the time interval allowed for slewing 

rather than the values in the weighting function.  Consequently, Markley concluded that 

if the time interval to slew were increased by ten percent, the non-optimal polynomial 

control solution prevents modal excitation nearly as well as the optimal solution.  He 

speculated that although more simple, a polynomial control function may be more 

sensitive to plant uncertainty and modeling errors (Markley, 1979: 625-647).  

Another theory to avoid modal excitation was to ensure that the frequency content 

of the input signal notched the first flexible mode.  Alfriend, Longman, and Bercaw 

disproved this theory.  Using an optimal control input from Swigart, they found that the 

location of notches (i.e. no frequency content) in the frequency content were dependent 

on the length of the time of the input signal.  Thus, as the time interval of the control 

input was varied, the notch moved away from the resonant frequency of the first 

structural mode, yet the control input did not induce structural excitation in the time 

domain.  The conclusion was that there is no relationship between the frequency content 

of the control input and the resonant mode in optimal slewing (Alfriend et. al., 1979: 65-

72). 
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2.2.2. Feedback Control 

Meriovitch and Quinn use both pole placement techniques, as well as an optimal 

control strategy, to minimize the control effort and elastic energy.  Bang-bang optimal 

control is used to slew the rigid body of structure.  Pole allocation is used for feedback 

control to suppress the modal excitations.  Here they presuppose the implementation of 

sensors at every node and multiple thrusters along the flexible appendage.  When this 

sensor configuration is allowed, direct feedback control can be implemented.  To 

minimize feedback control effort, the poles are placed such that the structural natural 

frequencies are the same, but the damping ratio is increased from their original values 

and uniform for all the considered modes.  The result is that all modes decay at the same 

rate, and is limited only by actuator location and saturation (Merovitch and Quinn, 1987: 

301-328). 

Multiple sensors and actuators are not a stringent requirement on feedback 

control, but the control theory is simpler.  Several authors have used feedback control for 

single input single output representations of the non-rigid plant (Junkins and others, 

1990; Schoen and others, 2003).  Their findings are presented next. 

2.3. Modern Developments and Current Motivations 

Modern developments in feedback control for the suppression of flexible mode 

vibrations have shifted away from optimal solutions and towards an all encompassing 

adaptive control theory.  Several authors have claimed to developed novel techniques of 

identifying plants and algorithmically deriving control systems insensitive to modeling 

errors and external disturbances (Schoen and others, 2003: 4585-4589; Song, 1994:2872-

13 



2876).  An algorithmic strategy has its benefits, but the model is assumed to be simplified 

to the first flexible mode.  This assumption is reasonable if the other modes are assumed 

to have higher frequencies and have higher damping factors. 

An algorithmic approach is relevant in this current investigation, although the 

higher modal frequencies are not sufficiently far enough from the first flexible mode 

frequency to base a controller design on only the first mode. 

Junkins, Rahman, and Bang take an approach to find a near-minimum time slew 

maneuver using the Lyapunov control law design method.  The control techniques used 

here greatly influenced this current investigation.  Feedforward and feedback tracking 

control laws were utilized in their design.  The attempt in their investigation is to 

accommodate an optimal solution to other performance indices such as external 

disturbances and plant uncertainty (Junkins, Rahman, and Bang; 1990).   

A smooth target trajectory was used rather than a step command to smooth the 

departure from a steady-state condition and the arrival at a new steady-state.  This 

technique is used in this investigation to reduce the control effort of the feedback control 

system.  Junkins admits that experiments must be conducted with a nominal model for 

the pre-calculation of an appropriate control solution to fit the smooth trajectory.  Junkins 

research becomes the principle basis of the open loop experimentation conducted in 

Chapter 3. 
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2.4. Quantitative Feedback Theory (QFT) 

 QFT has motivated much of the methods in this investigation of determining the 

robustness of the controller in the face of plant uncertainty and external disturbances.  All 

of the research in QFT for this investigation was developed by D’Azzo and Houpis. 

 QFT is a design method in the frequency domain of interest (i.e. the controller 

bandwidth, disturbance frequency content, etc.).  Essentially QFT defines the boundaries 

of possible plants (due to uncertainties and modeling errors) and defines the limits of 

acceptable disturbance sensitivities and ensures that a controller is designed within the 

limits of the worst case scenario.  QFT yields a single control solution which is valid for 

all configurations of the system plant.  Conversely, when designing for the nominal plant, 

one can see how much the uncertainties can vary before stability or other system 

specifications are violated. 

2.4.1. Parameter Variations 

 The open loop frequency response of the plant and compensator is first modeled 

on a Nichols Chart (or Bode plot).  As plant parameters are varied, there is a change in 

magnitude and phase of the frequency response.  The Nichols Chart directly correlates 

the closed loop response magnitude and phase.  The upper and lower limits of variations 

are plotted in the frequency domain to obtain an area of possible plants in the frequency 

domain.  For each parameter being varied, the maximum variations in the frequency 

response can be plotted on the Nichols Chart to see the corresponding closed loop system 

performance. 
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 In the case for designing for the nominal plant, unique Bode plots for a frequency 

range of interest can be generated to see the effects on the variation of the plant.  The 

worst case plant can be chosen based on gain and phase margins and other frequency 

response performance specifications.  The controller should then be designed for the 

worst case plant such that it still meets all performance specifications in the worst case 

scenario. 

 In this investigation, the compensator is designed for the nominal plant prior to 

any considerations of plant uncertainty.  The compensator is not designed the frequency 

domain for a variety of possible plants.  Rather, the compensator is designed in the time 

domain, and the variation of plant parameters is evaluated in time domain, and the 

sensitivity is evaluated in the frequency domain.   

2.4.2. Disturbance Rejection 

Typically the specifications of the disturbance sensitivity transfer function are that 

it be under some magnitude over the bandwidth of the disturbance signal.  Therefore 

there are only upper limits of disturbance sensitivity frequency response.  For this 

investigation the specifications are that the disturbance sensitivity must be below -6 dB 

over a bandwidth of 0.1 to 50 Hz.  The effects of plant variation on the disturbance 

sensitivity frequency response should be taken into consideration, as the magnitude will 

change with variations in plant parameters. 

2.5. Key Research Points Used in This Investigation 

 Most of the motivation of design techniques came from Junkins, Rahman, and 

Bang and their development of near-minimum time slew maneuvers.  One key point 
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taken is the determination of a priori control input which gives a smooth trajectory 

maneuver.  The use of feedback and feedforward control by Junkins is paralleled in this 

investigation as well. 

The QFT design method has motivated the study of plant variation of the effects 

of the controller.  In QFT the controller is nominally designed with the foresight of the 

worst case plant, in this investigation QFT is used primarily as an iterative tool.  That is 

to say, the controller is first designed to meet performance specifications; then with QFT 

analysis, the controller is adjusted to meet performance specifications for the worst case 

plant. 
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III. Methodology 

3.1. Chapter Overview 

 The purpose of this chapter is to derive the design of both the feedforward 

controller and the feedback compensator.  The feedforward controller is designed to 

achieve adequately quick slewing performance without inducing vibrations from the high 

frequency structural modes of the plant.  The feedback compensator combines lead 

compensation with proportional gain feedback to the output signal and its derivatives.  

The resulting compensator damps out vibrations that may have been induced from the 

feedforward controlled slewing maneuver as well as attenuates the disturbance signal 

present in the system. 

Furthermore, experiments are conducted with the entire control system to include 

disturbances and antenna plant variations.  The methods of quantifying the effectiveness 

of the control scheme and justifications of comparison are discussed in this chapter. 

3.2. Actual Plant Model 

The actual spacecraft mounted antenna model used in this investigation is 

presented in a linear time-invariant transfer function provided by the sponsor in a MatLab 

script file.  For the purposes of this investigation, the provided model is used as the 

nominal plant.  It is assumed that the provided plant model is the creation of a SYS ID 

process.  The truth model and its parameters are specified in Appendix A. 
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3.3. Feedforward Design 

 Two approaches to the design of the feedforward control input are investigated.  

The first approach entails conducting simulation experiments on the nominal plant model 

with known inputs to learn how the plant responds to torque inputs.  The second, a model 

following approach, entails the synthesis of a feedforward controller Gff(s) using plant 

inversion so that a well-behaved second-order response is automatically obtained.   

 In regards to the first approach, the plant was first assumed to be a simple rigid 

body with a flexible appendage.  Since the actual plant model is given in transfer function 

form, it is difficult – or impossible – to understand what is physically happening in the 

slew response.  When further insight was needed, a simple model was employed since it 

gave a state-space physical representation of the plant.  The experimentation and 

simulations on this model are shown in Appendix B. 

It was decided for simplicity in the simulations that a direct input of a known 

torque command would be better simulated than the use of a feedforward transfer 

function controller due to numerical instabilities in implementing a feedforward transfer 

function.  However, both techniques provided suitable responses. 

3.3.1. Design by Experimentation 

Open loop simulations with known torque inputs designed to perform the antenna 

slewing maneuver are conducted on the nominal plant model to determine what types of 

inputs would and would not excite the flexible modes.  Two types of torque inputs were 

considered in the investigation of an appropriate slew response.  The first is a doublet – 

where a positive pulse was commanded over a certain time duration followed by a 
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negative pulse given over the same time duration.  This input was chosen because it was 

expected that it would excite the flexible modes of the system.  The second type of input 

was a single sine wave.  This input was chosen because it is more continuous; therefore, a 

more practical type of input.  When integrated over time, an input signal that yields zero 

will result in slewing the structure from one angle to another, assuming that there are no 

other external forces.  In other words, the total input energy should be zero for the 

structure to steady itself at another attitude. Both of these input signals satisfy this 

requirement.  Figure 3-1 shows the two inputs over the same time duration of three 

seconds. 

 

Figure 3-1: Doublet Input (Left). Single Sine Wave Input (Right) 

Given that the highest structural mode of the provided plant model is about 80 Hz 

(see Appendix A.2), the simulation sampling frequency needs to be at least ten times that 

frequency; so a time step of 0.001 seconds is chosen for the simulation.  This time step 

insures that all flexible modes are captured in the time domain simulations. 

 The simulations on the simple plant indicated that the input signal duration should 

not be close to the time period of any of the resonant structural modes – See Appendix B.  

With the simple plant, inputs with relatively short input durations which corresponded to 
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frequencies higher than the structure modes were used to avoid the time period of the 

resonant modes.  However, this same technique could not be implemented on the actual 

plant due to actuator saturation limits and an unnecessarily high sampling frequency.  The 

only other option would be to investigate time periods longer than the structural modes’ 

frequencies. 

The bare structure of the truth model (See Appendix A.2) was simulated with the 

doublet and single sine wave input in an attempt to learn how the structure would respond 

to and vibrate with these inputs.  For input time durations of 2, 4, 6, 10, 16, and 20 

seconds, there is little to note on the structure response as far as mode excitation.  All 

responses demonstrated a well-behaved slewing maneuver with a smooth transition from 

one angle to another. 

 The response to the doublet input with a short two second duration is shown in 

Figure 3-2.  As shown in the slew rate plot, vibrations are evident in the response; 

however, they did not seem to appreciably disturb the slew angle. 

Figure 3-2: Slew Response of Antenna Structure with a Two Second Input Duration 

As the input durations increased, the vibrations were less and less noticeable.  

Shown in Figure 3-3 are plots of the simulation results where the input duration was 
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increased to six seconds. With a doublet input with a duration of six seconds, the 

vibrations are barely recognizable on the slew rate plot.  On the slew angle plot, the 

vibrations are unnoticeable, even on a microradian scale. 

 

 

Figure 3-3: Slew Response of Antenna with a Six Second Input Duration 

Since the input duration of 2 seconds did not significantly induce vibrations, 

inputs with shorter time durations are simulated to excite the modes of the structure. 

When the doublet input duration is 0.05 seconds, excessive vibrations are induced 

in the structure.  Shown in Figure 3-4, it can be seen that vibrations of about 21 Hz are in 

both the slew angle and the slew angle rate, long after the input has ended.  This 

correlates to the first harmonic of the base cycle of the input signal (which would be 20 

Hz).  Evidently, the input excited the 21 Hz mode in the flexible antenna structure model.  

Additional simulation experiments suggest that the residual vibrations of the antenna are 

dominated by the closest mode to the base frequency of the input (i.e. base frequency of a 

2 second input is 0.5 Hz), but residual vibrations from the other flexible modes are 

present in the residual vibrations as well. 
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Figure 3-4: Slew Angle Simulation with a Doublet Input Duration of 0.05 

 

Figure 3-5: Slew Rate Simulation with a Doublet Input Duration of 0.05 

The extremely low structural damping ratio is better depicted in Figure 3-4 and 3-

5, as the damping is evident over time, however it does take a long time to settle.  Even 

though the system is only vibrating ± 0.5 × 10-5 radians, the amplitude of the input torque 

was only one oz-in.  Should the input torque amplitude be increased, the vibration 

amplitudes would increase linearly. 
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From the previous simulations, it can be deduced that the lower the time duration 

of the input (doublet or single sine wave), the more vibrations are induced.  Therefore, 

slewing maneuvers with longer time durations are preferable over those with short ones.  

Longer slewing maneuvers avoid the high frequency flexible modes of the antenna 

structure.  Longer slewing maneuvers yield higher slew angles and induce little to no 

vibration and reach a steady-state in a reasonable amount of time. 

Although the structure simulations show that the feedforward torque inputs should 

have longer durations, the other components of the antenna plant have not been included 

in this portion of the investigation.  The angle rate sensor (ARS), anti-aliasing filter 

(AAF), and the A/D converters do not significantly contribute to the dynamics of the 

response.  The frequency responses of those components show perfect tracking with unity 

DC gain and a bandwidth of about 30 Hz.  However, the motor dynamics do not have the 

same benign tracking characteristics as the ARS, AAF and the A/D converter.  Hence, the 

simulation experiments with the doublet and single sine wave inputs are repeated to 

include the motor and structure combined.   

The motor Bode plots are shown in Figure 3-6.  There are two types of motors: a 

high gain, and a low gain motor.  As seen in the Bode plots, the high gain motor 

amplifies the input signal by roughly three orders of magnitude and the low-gain motor 

decreases the signal by about one order of magnitude. 
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Figure 3-6: Frequency Response of the High Gain motor (Blue) and Low Gain Motor (Red) 

Figures 3-7 and 3-8 show the responses to a doublet input on the combined high-

gain motor and structure.  The input duration here is 0.05 seconds again.  The high-gain 

motor does not seem to induce vibrations to the system that are evident in the simulations 

without the motor.  However, similar to the plot of the two second input signal applied to 

the bare structure (see Figure 3-2), the vibrations are evident in the plot of the slew rate.  

Key points here are that the settling time of the high gain motor-structure combined is 

much longer than just the structure, but the final slew angle is much greater. 
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Figure 3-7: High Gain Motor-Structure Slew Angle Response with a Doublet Input Duration of 0.05 

 

Figure 3-8: High Gain Motor-Structure Slew Rate Response with a Doublet Input Duration of 0.05 

The low gain motor/structure combination displayed similar responses to the bare 

structure.  As suggested by the Bode plots, the final slew angle is about one-tenth of that 

of the simulation of just the structure.  The low gain motor and structure respond much 

faster and reach a final slew angle much faster than the high gain motor/structure does.  

However, the vibrations are excessive.  This is attributed to the respective bandwidths of 
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the two motors.  The low gain motor has a significantly higher bandwidth.  The low gain 

motor’s bandwidth is 8 Hz while the high gain motor’s bandwidth is 0.05 Hz. 

 

Figure 3-9: Low Gain Motor-Structure Slew Angle Response with a Doublet Input Duration of 0.05  

 

Figure 3-10: Low Gain Motor-Structure Slew Rate Response with a Doublet Input Duration of 0.05 
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The previous simulations suggest that the low gain motor is best used to slew the 

antenna.  However, the response is relatively small (microradian slew maneuver) due to 

the fact that the torque amplitude only reached 1 oz·in and it was only implemented for a 

duration of 0.05 seconds.  It does beg the question as to which gains would be best used 

for control.  Since the accuracy specifications require that the response remain within five 

microradians of the desired response, small and fast inputs from the low gain amplifier 

motor result in residual vibrations that are within those performance specifications.   

With a low gain motor, the response to inputs is faster than the response from the 

high gain motor.  However, since the high gain motor gave a smoother response (see 

Figure 3-7), it may be used best for damping out the vibrations induced during the period 

where the low-gain motor is used.  The low gain motor should be used to slew the 

structure over some time period with an open-loop input to the plant; then, the high gain 

motor should take over with feedback control and dampen out the induced vibrations.  

The complexity of such dual mode simulations where one switches between the motors is 

avoided by eliminating the amplifier gains from further investigation.  The low gain 

motor transfer function structure is used and is multiplied by a gain such that the open 

loop frequency response at low frequencies has a magnitude of 0 dB, or a DC gain of 1 

(See Appendix A.3).  This then correlates to a steady-state output torque of 1 oz·in when 

the commanded torque is 1 oz·in. 

3.3.2. Implemented Feedforward Signal 

The feedforward signal is a single sine wave with a frequency of 2π/τd, where τd is 

the desired time duration of the feedforward input signal.  The final slew angle from the 
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feedforward signal is dependent on the amplitude of the torque and the duration of the 

input signal.  Without loss of generality, the desired final slew angle is chosen to be one 

radian. 

Considering only the rigid body mode, the equations of motion of the antenna are  

,   (0) (0) 0,   0 dbu tθ θ θ= = = ≤ τ≤ ,      (3-1) 

where u is the feedforward input signal and b is the inverse of the antenna rigid body 

moment of inertia – see Appendix A.2.  The input signal is 
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where, recall, τd is the desired time to slew, and A is the amplitude of the torque in oz·in.  

Solving Equation 3-1 yields: 
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at the time to reach a final slew angle, t = τd, the slew angle is 
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3.3.3. Design by Plant Inversion 

It is assumed that the plant model is determined from system identification.  

Although the plant model is not completely accurate, the obtained plant model is used as 
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the nominal plant to be controlled.  Thus the open-loop feedforward controller transfer 

function can be derived from the nominal plant, the modeling errors being ignored and 

considered to be handled by the feedback controller. 

To determine the desired feedforward transfer function Gff, first calculate the 

input signal required to give the desired response based on the knowledge of the nominal 

plant.  Assuming that there is no feedback controller generated input, the nominal 

feedforward input transfer function is, 

( )( )
( )

d
ff

su s
P s

θ
=          (3-5) 

The actual pointing angle response is assumed to be exactly the same as the 

desired response.  This is consistent with the idea that the feedforward controller assumes 

full authority for the pointing maneuver.  Therefore, θ, the output of the plant, matches 

the desired pointing angle response of the system, θd.  The desired response of the system 

is chosen to be the step response of a second order system.  The transfer function of this 

type of system is shown in Equation 3-6. 
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Figure 3-11: Time History of Desired Response 

Combining Equations 3-5 and 3-7 and solving for the feedforward control input yields 

the following: 
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This algorithm for calculating the feedforward control input works, provided that the 

plant model has an excess of no more than three poles than zeros.  If this is not the case, 

the control signal becomes improper in the frequency domain.  The desired ideal 

response, θd(t), would need to be changed so that its Laplace transform has three or four 

poles to compensate for an excess of four or five poles over zeros. 

The mechanization of the feedforward concept adds an additional transfer 

function Gff(s) which takes the reference input, θr = θd, and automatically outputs the 

feedforward command signal derived above.  Therefore, as opposed to sending a direct 

feedforward signal, uff, a transfer function takes the desired slew response (i.e. the 

reference signal) and outputs the proper uff to slew the plant.  The reference signal is 
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chosen to be exactly the same as the desired response, namely the output of the 

feedforward open loop control system.  Figure 3-12 shows the block diagram of the 

feedforward/feedback control system mechanization. 

 

Figure 3-12: Mechanized Control System Block Diagram 

The feedforward transfer function Gff(s) is designed by dividing the control signal 

uff(s) by the reference input θd.  Since the reference input is the same as the desired 

response of the system, the feedforward transfer function is 
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This transfer function represents a pure inversion of the nominal plant model.  

Separating the feedforward transfer function from the feedback system, leaving only the 

plant and feedforward transfer function, results in a cancellation of the plant transfer 

function, P(s).  In other words, the response from the feedforward controller is exactly 

the same as the reference signal input because the resulting overall transfer function is 1.  

Thus, the desired performance is achieved without the use of feedback control in the 

hypothetical absence of plant uncertainty and disturbances. 
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In the real world the implementation of this scheme does not exactly reproduce 

the reference signal.  Because resonances of the flexible modes are so close together in 

the frequency domain, inverting the modes may exacerbate the situation unless all the 

modes and their peaks are perfectly known.  Inverting the resonant modes simply means 

creating a notch where there is a spike in the frequency domain, thus – with the concept 

of additivity – effectively cancelling out the spike. 

For example, in the antenna plant under investigation, the 21 Hz mode needs to be 

inverted, or notched.  However, if the actual plant mode was slightly off, the notch 

created to cancel out the 21 Hz mode, actually results in a much larger resonant spike 

when summed with the structure’s frequency response.  The system identification 

problem now limits the implementation of plant inversion since it may result in residual 

vibrations that are much worse than the vibrations excited during the open loop operation. 

Typically, the imprecisely known modal frequencies will induce unexpected 

vibrations when the antenna is slewed.  That is to say, inaccurate frequencies/modeling 

errors will result in a response different from the desired response.  This of course 

reduces the robustness of this type of control; however, this problem is solved with the 

introduction of feedback control, which restores the robustness required for precise 

control of an uncertain plant. 

To minimize the possibility of exciting all of the modes of the system, the 

feedforward controller is simplified to only invert the motor, rigid body, and the first 

flexible mode of the plant.  As seen in most plants with flexible modes, the first flexible 

mode is typically the worst mode to excite because it has the greatest peak amplitude. 
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Further avoidance of perturbing the modes may be possible using the results 

found in open-loop experimentation.  These inputs may be more desirable because 

hypothetically they do not induce any vibrations in the system response, and robustness 

may not be an issue as long as the modes stay within reasonable bounds.  However, 

smooth feedforward inputs that avoid the flexible mode’s excitation may prolong the 

slewing time required for the antenna – so there is a tradeoff.   

Both the plant inversion and the single sine wave input are used to implement 

feedforward action.  The direct injection of the feedforward input signal into the antenna 

plant avoids any numerical instability which may arise through the use of the feedforward 

transfer function, Gff(s).  Numerical errors may arise from the pole-zero cancellations 

between the feedforward transfer function and the antenna plant and small errors in the 

poles and zeros can computationally lead to unexpected responses.  Therefore to simplify 

the simulations, a single sine wave feedforward signal is fed directly into the antenna 

plant rather than implementing the transfer function Gff(s) to automatically create a 

feedforward signal based on the desired response/reference signal. 

3.4. Computation of the Feedforward Signal 

 For the antenna rigid body, the moment of inertia J is 39.46 oz·in·s2.  Therefore, 

the amplitude, A, and desired slew time, τd, must satisfy the following requirement. 

2 247.9345 d
2A oz in sτ = ⋅ ⋅        (3-10) 

The feedforward control input is designed such that it satisfies the constraint in 

Equation 3-10.  To minimize the time to reach the final slew angle, this constraint is 

normally governed by the desire to avoid saturating motor output – thus limiting the 
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amplitude of the torque.  However, the saturation limits of the motor are unknown.  In 

lieu of this unknown saturation limit, the time is constrained.  A jittery response from the 

feedforward torque is still undesirable.  From the bare structure simulations shown in 

open-loop experimentation, shorter time durations cause more residual vibrations.  

Therefore, an additional constraint is placed on τd.  The time response for an input 

duration of six seconds shows no residual vibrations in the angle response – see Figure 3-

3. 

Based on the open loop simulations and justification of the utility of direct 

feedforward torque, the following feedforward input signal is then chosen: 
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This input signal yields the following slewing response from the entire combined nominal 

plant model. 

 

Figure 3-13: Response to Feedforward Torque 
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The angle response here is exactly as desired.  The structure slews one radian in 

six seconds and little residual vibrations are induced in the structure.  The final errors 

after a 6 second maneuver are on the order of 10-8 radians; therefore, the results should 

not be appreciably affected by the small difference between the steady-state slew angle 

and 1 radian. 

3.5. Design of Feedback Compensation 

The second step of the herein pursued control concept is the synthesis of a 

feedback controller.  Since the model is assumed to be linear, the superposition principle 

allows the feedforward and the feedback controllers to be designed separately. 

3.5.1. Feedback Control Theory 

The feedback compensator is designed for robustness.  It must reject an uncertain 

disturbance signal d2(s), and it must compensate for the uncertainty in the plant model.  

The accomplishment of these tasks is somewhat subjective.  The steady-state accuracy 

with the disturbance signal present must be within 5 microradians.  The resulting Bode 

plot of the compensated closed loop feedback control system should have good gain and 

phase margins (i.e. 6 dB and 25° respectively).  

The closed loop control system is expressed as 
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where P(s) is the plant transfer function, Gc(s) is the forward path compensator and H(s) 

is the feedback path compensator. 

The sensitivity function to the output disturbance d2 is 
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Gc(s) must be chosen so that the compensated system sufficiently rejects the disturbance 

signal d2 and suppresses the effects of plant uncertainty sourced from system 

identification. 

Feedback compensation provides derivative action by virtue of the availability of 

an antenna mounted rate gyro.  Thus, the feedback compensation technique is 

implemented in both the forward path of the loop and feedback path of the loop as shown 

in Figure 3-14. 

 

Figure 3-14: Feedback Compensation Block Diagram 

Here, H is a polynomial in s of increasing derivatives of the response, θ.  A hypothetical 

transfer function for H is 

2
1 2 3( )H s k k s k s= + +         (3-14) 

However, Figure 3-14 is misleading in that it represents H(s) as a feedback 

transfer function.  In actuality, the diagram only signifies that derivative data is available 

for feedback – that is to say, the slewing angle is not the only data that is fed back to the 
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compensator.  Rate gyros and accelerometers can measure the angular rates and 

accelerations of the antenna, and the data taken from these sensors allows the use of rate 

and/or acceleration feedback control.  This type of configuration allows feedback gains to 

be assigned for the derivatives of the response, θ.  The physical mechanization involves 

measuring the output angle’s rate and acceleration using either an angular acceleration 

sensor or a pair of separately mounted accelerometers.  If the use of these sensors is not 

available, the control problem becomes increasingly difficult.   

The first term of the compensator, H(s), is the angle position gain.  The second 

term is the angular rate gain.  The third term is an angular acceleration gain.  If 

accelerometers are not available to provide the antenna’s angular acceleration data, the 

compensator is limited to the first two terms.  Otherwise, if the accelerometer data is 

available, then the compensator may have all three terms and the respective gains are k1, 

k2, and k3.   

Again, the objective is to lower the resonant peaks of the plant and increase the 

gain and phase margins of the system.  To simplify the problem, the plant is reduced from 

having twenty modes, to having a single resonant mode.  This assumption is reasonable 

because for typical flexible systems, after each subsequent flexible mode, the transfer 

function magnitude drops at an additional rate of 40 dB per decade.  Therefore, provided 

that the frequencies of the modes are separated enough, the suppression of the first mode 

should sufficiently reduce the vibration level. 
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3.5.2. Example 

An academic example of resonance suppression is presented first.  It is important 

to note that this example assumes the availability of acceleration feedback that, 

unfortunately, is not currently available in the antenna control system.  It is used strictly 

to demonstrate suitable control of a plant with a single, very lightly damped elastic mode 

using feedback compensation.  It is also important to note that in reality there is no actual 

H(s) compensator and no derivatives are computed; instead, the derivatives are physically 

measured and fed back through inner loops. 

The example plant has the following transfer function: 

2

16( )
( 1)( 2 0.0005 4 16)

P s
s s s s

=
+ + ⋅ ⋅ +

     (3-15) 

The plant has a single lightly damped (ζ = 0.0005) mode at a frequency of 4 rad/s.  

It also demonstrates typical rigid body dynamics. 

Feedback control is used to stabilize the highly resonant elastic mode of the plant.  

The feedback transfer function is chosen to be in polynomial form, as discussed 

previously, 

( ) ( 1)( )H s ks s s a= + +        (3-16) 

and the compensator, Gc(s), is chosen to be a constant gain K.  From Equation 3-12, the 

closed loop transfer function is 

2

( ) 16( )
1 ( ) ( ) (0.8 16 ) 16(1 )

KP s KT s
KP s H s s Kk s Kka

= =
+ + + + +

   (3-17) 

The resulting closed loop transfer function is a second-order system.  Now the 

natural frequency and damping ratio can be arbitrarily chosen.  To keep the physics 
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unchanged, ωn is chosen to be 4 rad/s; however, the damping ratio, ζ, is increased to 

0.707.  The resulting values for the gains K, k, and a, can then be analytically determined 

in this academic example to give the desired performance results.  The resulting gains are 

listed below. 

   K = 1.563       

   k = 0.28       

   a = 1.29       

The resulting frequency and time responses are shown below.  The designed 

feedback compensation has eliminated the sharp resonant spike of the original open loop 

plant frequency response.  The time response will be much smoother with smaller and 

negligible oscillations.   

 

Figure 3-15: Frequency Response of Compensated and Uncompensated Systems 
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Figure 3-16: Time Response of Compensated and Uncompensated System 

It is important to note that while the compensated system’s frequency response 

presents a solution to the resonant spike, the compensated transfer function magnitude at 

higher frequencies is slightly higher than the uncompensated transfer function magnitude 

– as consistent with Bode’s fundamental “waterbed” theorem.  Figure 3-16 shows the 

time response to a single sine wave torque input of 2 seconds.  The compensated systems 

time domain response is smooth and without noticeable oscillations/ringing. 

The previous example presented utilizes higher-order sensors for the 

compensation.  The actual mechanization of feedback control would nominally have 

angular acceleration and angular rate data; however, even the acceleration data may not 

be available.  Lacking the acceleration data limits the feedback compensator, H(s) to, at 

most, a second-order polynomial. 
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If angular acceleration data is not available, zeros may be included in the 

compensator, Gc(s), with an equal number of poles.  Some flexibility in the design of the 

control system is then lost, since dynamics, in addition to the chosen dominant closed 

loop poles, affect the closed loop response. 

3.5.3. Actual Implementation of Feedback Control 

Motivated by the academic example discussed above, feedback compensation is 

implemented on the nominal plant as follows.  The Figure 3-17 demonstrates the actual 

feedback control scheme.  The plant transfer function, P(s), takes an input torque and 

outputs an angular rate.  Indeed, angular rate data is available for feedback control.  The 

inner feedback loop operates on the angular rate measurement.  The inner loop utilizes 

proportional gain feedback control, with the gain Kr, to maintain a desired angular rate.  

An integrator is in place so that the slewing angle data is also available for feedback.  The 

slewing angle is fed back into a lead compensator, Gc(s), which further tightens the 

control loop.  The disturbance signal d2 is introduced into the system to model an external 

angular disturbance from the host spacecraft/bus. 

d2 

+ 

  

Figure 3-17: Implementation of Feedback Control 
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Since the feedback controller is absolved from the responsibility of slewing the 

structure, its design is focused on disturbance signal rejection and vibration damping and 

suppression. 

The value of Kr and the transfer function Gc(s) are determined based on root locus 

considerations and time domain simulations.  Again, high pointing accuracy (small error) 

and disturbance rejection are the major factors in designing a suitable compensator.  The 

next section shows the steps taken in choosing the feedback parameters which yield 

appropriate disturbance rejection. 

3.5.4. Feedback Compensator Design 

Since the feedforward torque input signal does not excite residual vibrations (see 

Figure 3-13), the main goal of the compensator is the attenuation of the disturbance 

signal.  From Figure 3-17, the gain Kr takes an input error of rad/s and outputs a torque 

with units oz-in.  The units of Kr are oz·in·s.  The compensator Gc takes an angle error in 

radians and outputs an angular rate in radians per second to be differenced with the inner 

feedback loop.  The dimension of Gc is then s-1. 

To begin to find values for Kr and Kp which satisfy performance specifications, 

the plant model is simplified and a root locus design technique is employed to see how 

the system poles will behave with different values of gain.  For simplicity, the structure is 

assumed to be the rigid body with the first flexible mode; the time delays, the motor, the 

sensors, and the other flexible modes are ignored at this point.  First, the inner loop of the 

control system is designed, that is, the angular rate response to a desired angular rate 

response transfer function.  The transfer function of the simplified plant is shown below. 

43 



2

2

0.025( 0.85 442)( )
( 0.83 430)

s sP s
s s s

+ +
=

+ +
      (3-18) 

It is seen here that the second-order poles and zeros are very close to each other and that a 

change in gain would not affect the location of the flexible mode poles – see the root 

locus plot in Figure 3-18.  This is satisfactory, because the objective is not to alter the 

structure’s flexible mode frequency, that is, to change the physics, but to satisfactorily 

track the commanded angular rate.   

Increasing the gain, Kr, does not change the open loop second-order poles very 

much; it does move the free integrator pole away from the imaginary axis.  By moving 

the pole away from the imaginary axis two things are implied.  First, the farther the pole 

is moved away, the more the response becomes dominated by the very low damped 

structural modes which remain close to the imaginary axis.  Second, the farther the pole 

is moved away, the faster the first-order response to system inputs.  So the trade-off is a 

fast, but oscillatory response, or a slower, smoother response. 
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Figure 3-18: Root Locus of Inner Loop 

Since the structural mode poles have a real value of about -0.4, it traditionally is 

not wise to choose the gain such that the free integrator pole moves farther left than that.  

As the pole moves farther away from the axis, the tracking error increases and the 

response may become dominated by the second-order poles.   

Consequently, since the structural mode (i.e. second-order pole) is lightly 

damped, increasing the gain may make tracking very difficult.  However, since there are 

zeros present in the system, it also may be safe to assume (as long as the gain remains 

reasonably low) that the zeros and the poles are close enough to each other to cancel 

themselves out, thus leaving a dominant first-order response.   
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If the gain is increased such that the pole is moved left of the second order poles, 

there are two possibilities.  The first is that the second order poles dominate (i.e. no pole-

zero cancellation).  The second is that the poles and zeros cancel and first order pole 

remains dominant.  Due to the simplicity of this model, and the difficulty of determining 

the final response, no definite value of Kr is chosen at this point.  The simplified plant 

model is used and the analysis continues to the outer loop.   

Once θ  is fed back using Kr, the closed loop transfer function for the inner loop is 

2

3 2

0.01( 0.85 442)( )
(0.83 0.025 ) (430 0.0213 ) 11.05r r

s sG s
s K s K s

+ +
=

+ + + + + rK
  (3-19) 

The next step is to determine Gc(s).  First, it is assumed that Gc(s) is a constant 

gain.  Therefore, the root locus method is employed again for analysis.  The new open 

loop transfer function multiplies the closed inner loop transfer function with a free 

integrator (see Figure 3-17).  Several root locus plots are shown below with different 

values of Kr. The root locus plot, with a value of Kr of 4 oz·in·s, is shown below in Figure 

3-19.  A root locus plot with a higher Kr of 40 oz·in·s is shown in Figure 3-20.  And a root 

locus plot with a Kr of 400 oz·in·s is shown in Figure 3-21. 
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Figure 3-19: Outer Loop Root Locus with an Inner Loop Gain of 4 
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Figure 3-20: Outer Loop Root Locus with an Inner Loop Gain of 40 

 

Figure 3-21: Outer Loop Root Locus with an Inner Loop Gain of 400  

As the gain Kr is increased, the structural mode poles and zeros loci move toward 

the right half plane as the rigid body poles and zeros move further left.  Instability here is 

not a major concern because the gains required to destabilize the system are on the order 

of 105.  Since the objective here is to keep the gains as low as possible, gains of that 

magnitude are not taken into consideration. 

Although the root locus plots do not give definite values for appropriate gains, 

they do give a good starting point for design iteration through simulations in the time 

domain.  Since there are more complicated interactions with the feedforward and 

feedback torque inputs, multiple loops, and feedback loop transfer functions, it was 

decided that the feedback compensator should be designed using time domain 
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simulations with the full control system in operation.  Therefore, all components of the 

control system were included for the design of the feedback compensator.  Indeed, the 

feedback controller is not designed separately here because it has the twofold purpose of 

compensating for the residual tracking error from the feedforward torque input and the 

attenuation of the disturbance signal.  Therefore, the full control system is simulated and 

the feedback compensation parameters are determined from the response of the full 

control system. 

3.6. Full Control System 

The full control system block diagram is shown in Figure 3-22. 

uff d 

 

Figure 3-22: Full Control System Block Diagram 

From Figure 3-22, it is seen that the slew angle is fed back to the compensator, 

Gc(s).  The antenna angle rate feeds through the sensor transfer functions in the feedback 

loop before it feeds back into the proportional gain compensator, Kr. 

A simple lead compensator  
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is considered.  From here, choosing the parameters becomes an iterative process.  The 

gains Kr and Kp were evaluated based on their time response, and pc and zc were then 

adjusted so that the gains could be lowered.   

The disturbance signal is now introduced.  The disturbance signal is made up of a 

large number of tones ranging in frequency from about 0.1 to over 50 Hz.  Each tone had 

its own amplitude and phase shift.  The total disturbance signal is displayed in the figure 

below.  

 

Figure 3-23: Pseudo-Random Disturbance Signal 

The compensation parameters were varied until the disturbance transfer function 

peak frequency magnitude response was below -6 dB and the settled time response was 

within five microradians of the desired response.  A slightly less significant issue was the 

speed of response.  It is taken into consideration, but because the other two performance 

specifications are so tight, the speed of response does not appreciably vary once the other 

two specifications are met. 
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The final parameters for the compensator are listed below. 
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The time response and the frequency response of the disturbance transfer function 

are shown in Figures 3-24 and 3-25.  Note the beneficial impact of feedforward action in 

Figure 3-24.  There is no overshoot and the antenna slews one radian in six seconds, just 

as it was designed.  In Figure 3-25 it is shown that feedback compensation attenuates the 

disturbance signal to -6 dB in the worst case. The open loop gain and phase margins are 

shown in Figure 3-26 to show the stability robustness.  Note the tight slew angle steering 

performance.  The time response is very close to the desired time response as shown in 

Figure 3-13.   

 

Figure 3-24: Slew Angle Response of Full Control System 
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Figure 3-25: Bode Magnitude Plot of Disturbance Transfer Function 

 

Figure 3-26: Gain and Phase Margins Compensated Control System 
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The control system meets all performance specifications.  The comparison to the 

performance of the pure open loop system and pure feedback system to the integrated 

feedforward/feedback system is discussed in Chapter 4, as is the experimental proof that 

the uncertainty of the plant does not cause the performance specifications to be violated. 

3.7. Experimentation with the Full Control System 

 Now that the full control system has been fully implemented, the validation of the 

design is outlined in this section.  The first part of the experimentation is to prove that the 

integration of the feedforward and feedback control concepts provides a better response 

than the individual use of either.  The second part of the experimentation proves the point 

that the high uncertainty in the plant and disturbance frequency range can place the 

controlled system outside of the performance specifications.  Thus, the importance of 

reducing or bounding the uncertainty is underlined. 

3.7.1. Comparison to Pure Feedforward and Feedback Control 

 The pure open loop control system is simulated in the presence of the disturbance 

signal.  Since there is no feedback action in the open loop system, there should be no 

attenuation in the disturbance signal. 

 The feedback controller is simulated in the presence of the disturbance signal.  

Since the same feedback compensation scheme is used, the effects of the disturbance 

signal should be attenuated just as well, once the system reaches a steady-state.  

However, since there is no feedforward control, it is assumed that the feedback 

compensator will need to exert extra control effort to slew the antenna structure.  Thus a 
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larger overshoot is expected, and some structural vibrations may be evident in the steady-

state response. 

3.7.2. Simulation of Plant Uncertainty 

 The plant transfer functions have several parameters which need to be estimated 

or determined by SYS ID.  A number of these parameters may be difficult to determine 

and may easily vary, depending on the space environment of the plant.   

It is assumed that the maximum variation of the plant parameters is ±10 percent of 

their nominal value.  To analyze the effect of varying the plant parameters on the system 

response, critical plant parameters were altered by ±10 percent.  This variation range is 

used because it is consistent with the parameter estimation performance of SYS ID.  This 

variation is assumed to encompass the errors not only in SYS ID, but changes in 

parameter variation over time (e.g. aging).  The specific parameters which are varied are 

chosen based on the difficulty of determining the parameter by SYS ID as well as the 

likelihood that the parameter will change over time.   

This analysis is in the spirit of QFT, except here the reverse is done.  In QFT the 

controller is designed based on the worst case scenario.  In this investigation the worst 

case scenario is developed after the controller has been designed.  The controller must 

meet all performance specifications in the worst case scenario before it can be considered 

robust enough for the uncertainty of the plant model. 

The first parameters to be considered were the natural frequencies of the flexible 

modes.  At high frequencies, most structures vibrate at small amplitudes when excited at 

their natural frequency.  SYS ID measures free responses to determine the natural 
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frequencies; however, the measurements are corrupted by noise.  Therefore, the 

frequency estimates can often be inaccurate.  Also, due to fatigue and stress, the 

structural modes may change. 

The second parameter taken into consideration was the modal peaks of each of the 

structural modes.  These peaks represent the amplitude ratio of the output divided by the 

input of vibration of each mode.  Without sufficient measuring equipment, the peaks 

determined by SYS ID will be miscalculated.  Also, similar to the frequencies of 

structural modes, the modal peaks may change due to the stiffening or softening of the 

structure over time. 

The third parameter taken into consideration was the moment of inertia of the 

rigid body model.  Over the lifetime of the antenna this may change due to structure 

adjustments.  The overall variation of the moment of inertia caused the disturbance 

magnitude maximum to increase in both directions; the minimum was of course at the 

nominal position. 

The next parameter taken into consideration is the time delay.  The time delay is 

due to the computational cycle time.   

The next parameter that was varied was the amplifier bandwidth.  The bandwidth 

is likely to change over the lifetime of the motor, mostly due to the degradation of the 

amplifier electronics in the space environment. 

The last parameter that was varied was the motor gain.  Essentially this constant 

acts as an amplifier as well, because it converts a current into a torque.  This motor gain 

is likely to change over time, also, due to degradation of the hardware.  Since it may vary 
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slowly over time, it is also difficult to determine solely based on an initial System ID 

experiment. 

3.8. Chapter Review 

 This chapter covers the derivation of the feedforward and feedback control 

concepts used in this investigation.  The feedforward control concept inputs a known 

torque signal to get the desired slewing response.  The feedback compensator employs 

angular rate proportional gain feedback and angle feedback with lead compensation to 

meet the desired performance specifications. 

 This chapter also reviews the background of the experimentation covered in 

Chapter 4.  The comparison of integrated feedforward and feedback control to the two 

separated control concepts is rationalized.  Also the investigation of the effects of plant 

uncertainty is detailed. 
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IV. Results and Analysis 

4.1. Control System Integration 

There are two parts of the total control system, feedforward control and feedback 

compensation.  In this section, it is shown that the integration of the two yields a better 

time response than each of them would individually. 

Figure 4-1 shows the open loop control scheme.  The feedback portion of the fully 

integrated control system is removed.  There is no way for this controller to attenuate the 

disturbance signal since there is no feedback control action. 

d 

+ 
+ GTD(s) Σ Gmotor(s) Gstruct(s) uff θ 

 

Figure 4-1: Open Loop Control  

Figure 4-2 shows the feedback compensation scheme.  Here, the feedforward 

control input is removed.  However, there is feedback action, so the disturbance 

attenuation should be approximately the same.  However, since there is no feedforward 

control, the feedback control action needs to be much greater in order to also perform the 

slewing control task; therefore, a more oscillatory response is expected. 
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Figure 4-2: Feedback Compensation  

 The time responses of the open loop control, the feedback compensation, and the 

integrated control system are shown in Figure 4-3.  As expected, there is a much larger 

overshoot in the time response of the feedback compensator.  The result is that it takes 

much more time for the response to settle.  Also as expected, there is no disturbance 

attenuation in the time response produced by the feedforward controller alone.  This is 

unacceptable because the slew angle never stays within the performance specification’s 

accuracy bounds. 

 

Figure 4-3: Time Domain Response of Feedback, Feedforward, and Integrated Control 
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 Figure 4-3 proves that feedback control is essential to disturbance attenuation and 

that the performance specifications can not be met without it.  Figure 4-4 shows the 

absolute value of the errors between the three responses and the desired response 

presented in Figure 3-13.  The overshoot in the feedback compensator is shown here and 

the feedforward compensation error is just the absolute value of the disturbance signal, 

since there is no attenuation. 

 

Figure 4-4: Errors between the Time Response and Desired Response 

 Figure 4-5 is a closer look at the errors on a microradian scale since they can not 

be seen in Figure 4-4.  It is seen here that after about fifteen seconds the two 

compensators match up very closely.  The advantage of the integrated control system is 

that a smaller overshoot ensues with the same amount of gain.  In order for the pure 

feedback compensator to respond with the same amount of overshoot, the gains would 

need to be increased. 
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Figure 4-5: Errors in the Time Response (Feedback and Integrated Control Only) 

A close-up view of the Bode Magnitude plot shown in Figure 3-25 is presented 

here.  The highest point that the disturbance transfer function reaches is -6.624 dB.  This 

is of course below the 6 dB specification.  This specification insures that in the worst case 

scenario where a disturbance tone has the exact frequency where the magnitude was the 

greatest, the feedback controller can still attenuate the effect of the disturbance on the 

antenna pointing angle by a factor of 4. 

It is shown that the fully integrated control system meets the disturbance 

attenuation performance specification of -6 dB attenuation and the accuracy performance 

specification of ±5 microradian accuracy.  It is also shown that the fully integrated 

control system yields a better time response than the individual control components.  

Thus, the utility of integrated feedback and feedforward control is proven for the nominal 

plant. 
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Figure 4-6: Maximum Value Disturbance Bode Magnitude Plot with Full Compensation 

4.2. Proof of Performance with Plant Uncertainty 

This section shows the time and frequency domain changes as critical plant 

parameters are varied from their nominal values.  Again, each parameter is assumed to be 

accurate to within ten percent of its nominal value.  This uncertainty encompasses all 

error sources. 

4.2.1. Variation of Structural Modes Natural Frequencies 

Each flexible mode’s frequency was altered by ten percent from its nominal 

value.  The resulting changes in the nominal plant are more evident in the time domain.  

The disturbance sensitivity in the frequency domain remained virtually unchanged with a 

change in structural frequency.  However, the errors in the time domain show that when 

the structure modes are decreased, the errors slightly increase.  The error changes are 
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typically on the order of 10-8 radians.  However, as the structural mode frequencies 

decreased there is a consistent increase of the errors in the time domain across the entire 

time response of the control system. 

 

Figure 4-7: Time Domain Errors with Structure Natural Frequency Variation 

 

Figure 4-8: Disturbance Transfer Function Magnitude when the Structure Natural Frequencies Vary 
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4.2.2. Variation of Structural Modal Peaks 

In the time response, the change in errors with a ten percent variation is much 

smaller than it was when the structure frequencies were varied.  Again, there is virtually 

no change in the disturbance signal attenuation when the modal peaks are varied.  The 

time response errors increase very slightly for a ten percent increase in modal peak 

values.  For all intents and purposes, the variation of this parameter can be considered to 

have a negligible effect on the performance of the control system.  This is somewhat 

expected since the effects are small and only applicable in the high frequency range 

where all the flexible structure modes are. 

 

Figure 4-9: Time Domain Errors with Structure Modal Peak Variation 
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Figure 4-10: Disturbance Transfer Function Magnitude with Modal Peak Variation 

4.2.3. Variation of Rigid Body Moment of Inertia 

The variation in the rigid body moment of inertia caused the frequency response 

disturbance magnitude maximum to increase slightly in both directions.  The moment of 

inertia also had a significant impact on the frequency at the peak disturbance sensitivity 

transfer function magnitude.  A moment of inertia increase generally caused an increase 

in the time domain errors.  This is expected because the increase in inertia would make it 

more difficult for the motor to dampen out the vibrations. 
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Figure 4-11: Time Domain Errors with Rigid Body Moment of Inertia Variation 

 

Figure 4-12: Disturbance Transfer Function Magnitude with Moment of Inertia Variation 

4.2.4. Variation of Time Delay 

The variation in time delay only extended for one millisecond in each direction.  

However, this has had the largest effect on both the time and frequency response of the 

system seen thus far.  In some time periods the largest errors occurred when the time 
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delay increased, and in other time periods the largest errors occurred when the time delay 

was decreased.  In the frequency domain, a one millisecond increase in time delay 

increased the maximum magnitude from -6.624 dB to -6.52 dB.  While this is still well 

below the -6 dB specification, it shows the magnitude of the impact of the time delay on 

the performance of the controls system. 

 

Figure 4-13: Time Domain Errors with Time Delay Variation 
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Figure 4-14: Disturbance Transfer Function Magnitude with Time Delay Variation 

4.2.5. Variation of Amplifier Bandwidth 

As the bandwidth of the amplifier decreased, so did the disturbance attenuation.  

The time domain errors were negligible and no particular trend is discernible.  The 

change in bandwidth resulted in a very large increase in the disturbance sensitivity 

magnitude.  With a bandwidth frequency decrease of ten percent, the disturbance 

magnitude increases to -6.44 dB.  This parameter is also very critical because small 

changes result in a high impact on performance in the frequency domain. 
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Figure 4-15: Time Domain Errors with Motor Bandwidth Variation 

 

Figure 4-16: Disturbance Transfer Function Magnitude with Motor Bandwidth Variation 

4.2.6. Variation of Motor Constant 

When the motor gain was varied, the disturbance maximum followed a parabolic 

shape as was the case when the rigid body moment of inertia was changed.  The more 
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significant change in the frequency response was the change in the frequency of the 

maximum disturbance sensitivity.  The frequency of the maximum increased as the motor 

gain increased.  However, the time domain errors increased significantly when the motor 

constant was decreased. 

 

Figure 4-17: Time Domain Errors with Motor Gain Variation 

 

Figure 4-18: Disturbance Transfer Function Magnitude with Motor Gain Variation 
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4.2.7. Summary of Sensitivity Study 

The following table summarizes the effects of the critical plant parameter 

variations on the time and frequency response.  Most variations had better performance in 

one direction and worse in another.  The rigid body moment of inertia and the motor gain 

variations caused a more parabolic curve, where the best response resulted when the 

variation was zero. 

Parameter Time Domain 
(90%) 

Frequency 
Domain (90%) 

Time Domain 
(110%) 

Frequency 
Domain (110%) 

Structure 
Mode Freq. Larger Error Negligible Smaller Error Negligible 

Modal Peak Negligible Negligible Negligible Negligible 
Moment of 

Inertia Negligible Parabolic 
Decrease Negligible Parabolic 

Decrease 

Time Delay Inconclusive Smaller 
Maximum Inconclusive Larger 

Maximum 
Motor 

Bandwidth Inconclusive Larger 
Maximum Inconclusive Smaller 

Maximum 

Motor Gain Larger Error Parabolic 
Decrease Smaller Error Parabolic 

Decrease 
Table 4-1: Summary of Variation Impacts on Frequency and Time Domain Responses 

 Figure 4-19 shows how the maximum magnitude of the disturbance sensitivity 

transfer function changed with the critical parameter variations.  The largest impacts on 

the magnitude are from the time delay and the amplifier bandwidth.  Thus, these two 

parameters are the most critical to bound so that the uncertainty remains low. 
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Figure 4-19: Individual Parameter Variation Effects on Disturbance Margin 

4.3. Worst Case Scenario 

4.3.1. Justification of the Worst Case Plant 

The critical plant parameters were varied individually to see the effects on the 

time and frequency domain response.  However, very rarely is the “worst case” scenario 

only going to involve the variation of a single plant parameter.  In light of this, the 

previous analyses were used and simulations were performed to find the “worst case” 

scenario.  Figure 4-19 graphically shows the effects of the variations of the individual 

parameters and assists in the determination of the worst case plant. 

 From the previous analyses, the time errors are well within the five microradian 

precision range.  The disturbance rejection margin however, is very sensitive to many of 

the plant parameters, especially the time delay and motor bandwidth.  Thus, in following 

the trends shown in Figure 4-19 of the disturbance margins, the variations are chosen 

based on the lowest disturbance rejection/margin of each individual parameter.  The idea 
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being, that the combination of all the individual parameters would, in fact, be the overall 

worse case scenario.  The table below shows the worst case scenario in the frequency 

domain, that is, the worst disturbance attenuation while each parameter was varied.   

Parameter Margin at 90% Margin at 110% Worst Case (FR) 
Structure ωn 6.624 6.624 Inconclusive 
Modal Peaks 6.624 6.624 Inconclusive 

Amplifier Frequency 6.438 6.784 90% 
Motor Constant 6.588 6.598 90% 

Time Delay 6.72 6.528 110% 
Moment of Inertia 6.592 6.593 90% 

Table 4-2: Table of Parameter Variations 

The worst case scenario can not be determined only from this table.  The 

variations in the first two parameters show inconclusive results.  The frequency shift of 

the disturbance magnitude plot over the variations of the moment of inertia and motor 

gain should also be considered.  Over several iterations it was determined that the worst 

case scenario occurred with the following parameter variations. 

Parameter Variation 
Structure ωn 90% 
Modal Peaks 90% 

Amplifier Frequency 90% 
Motor Constant 90% 

Time Delay 110% 
Moment of Inertia 90% 

Table 4-3: Worst Case Plant Variation 

4.3.2. Response of Worst Case Plant 

In this worst case scenario the maximum value of the disturbance magnitude 

response was -6.327 dB.  There is still a margin of 0.327 dB before the system does not 

meet performance specifications.  The time response errors are still well below the 5 

microradian accuracy bounds, which is good.   
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Figure 4-20: Time Domain Errors with Worst Case Plant 

 

Figure 4-21: Frequency Response of Disturbance Magnitude with Worst Case Plant 
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4.3.3. Correcting the Compensator Gains 

If the uncertainty of the parameters were absolutely bounded at ten percent, then 

the gains of the controller could be reduced to make the control system barely meet 

performance specifications.  The following values of Kr and Kp still satisfy the 

performance specifications: 

Kr = 45 oz·in·s  

Kp = 180 s-1 

The new compensator parameters give a disturbance margin of 0.3 dB, which is 

slightly worse than the old controller, but the time errors are barely within the five 

microradian band of accuracy.  The new values are a ten percent reduction of the original 

gains, thus a ten percent reduction in control effort.  This also entails a ten percent 

reduction in electrical power used for control.  This then underlines the importance of 

establishing the uncertainty bounds of different plant parameter estimates provided by 

SYS ID. 

 

Figure 4-22: Lower Gain Disturbance Magnitude Maximum 
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Figure 4-23: Time Response Errors with Lower Controller Gains 

4.4. Summary of Results 

The results presented in the beginning of this chapter show that an integrated 

control system does indeed perform better than pure feedback and pure feedforward 

control.  It incorporates the disturbance attenuation capability of feedback control with 

the simplicity of open loop feedforward control to reduce the feedback control action. 

The results presented in this chapter also prove the importance of bounding the 

uncertainty in the parameter estimates provided by SYS ID.  With the error bounded at 

ten percent the gains could be reduced by 10 percent.  If the error were any greater, it is 

likely that the same compensator gains would violate the performance specifications of 

the antenna plant. 

 

 

75 



V. Discussion and Conclusions 

5.1. Concluding Remarks 

The design of a robust controller for an uncertain antenna plant on board a 

spacecraft is considered in this paper.  The performance specifications for the controller 

are 5 microradians steady-state accuracy and in the presence of an external disturbance 

signal the magnitude of the disturbance frequency response must be below -6 dB for the 

entire frequency band of the disturbance signal which is roughly between 0.1 and 50 Hz. 

Sensor noise was not taken into consideration in this investigation.  Noise 

effectively limits the amount of disturbance attenuation achievable because, in view of 

Equation 1-2, the high gains in the controller which are responsible for attenuating the 

disturbance will simultaneously amplify the sensor noise.  The internal disturbances, of 

type d1, were also disregarded in this investigation.  Internal disturbances would normally 

come from actuation disturbances (i.e. motor recoil or dead zone).  A separate d1 

disturbance signal would need to be included to model that type of disturbance, and the 

feedback compensator would need to attenuate that signal as well.  Finally, the forward 

loop gains are capped by actuator saturation; that is, the maximum torque output of the 

motor.  Since saturation limits were not available during this investigation, they were 

ignored.  Having them available would be beneficial in determining an optimal control 

system.   

Cognizant of sensor noise amplification and actuator saturation, the gains have 

been kept as low as possible while still satisfying the performance specifications of 

control accuracy and wideband disturbance rejection. 
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Specifically, the concept of utilizing feedforward control in conjunction with 

feedback compensation was thoroughly investigated.  The feedback compensator is 

responsible for attenuating the disturbance signal, mitigating the deleterious effects of 

plant uncertainty, as well as mitigating any residual vibrations induced from the 

feedforward control signal.  When combined with feedforward control, less feedback 

control action s needed to slew the antenna structure, since the model-based designed 

feedforward control input accomplished most of the slew maneuver.  Since this was the 

case, the gains of the compensator could be reduced while still achieving a very precise 

slew maneuver, since less control effort is required from the compensator to slew the 

antenna. 

At the conclusion of the design portion of the investigation, the controller is 

exercised in simulations with variations in plant parameters.  The variations typically 

increased the amount of error in the signal and the magnitude of the disturbance 

sensitivity function.  Thus, changes in the plant parameters away from the nominal often 

led to worse responses.  A worst case plant was then created based on the patterns seen in 

varying different parameters.  It was found that the performance of the controller, even 

given the worst case plant, exceedingly met the performance specifications.  Therefore 

the gains were reduced by ten percent and the performance specifications were met.  This 

underlines the importance of bounding uncertainty.  If the uncertainty would be reduced 

more than ten percent, the gains could likely be further reduced. 
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5.2. Implications of Investigation 

This investigation has given some insight to how the integration of feedforward 

action with feedback compensation can reduce the gains in the compensator.  This 

avoidance of high gains is beneficial to avoid actuator saturation and to limit the 

sensitivity to sensor noise in the system.  Also, the concept of plant uncertainty is 

addressed in this investigation.  The ability to bind the certainty of the plant becomes 

crucial in high accuracy control applications.  Research in this direction will only 

facilitate the spacecraft control applications. 

5.3. Further Research 

This investigation covered a narrow band of possibilities in both plant uncertainty 

and control implementation.  In lieu of this, no serious effort was made in this 

investigation to “optimize” the response of this problem.  Different applications of 

feedforward control can be studied.  For example some the input torque shaping 

techniques discussed in Chapter 2 can be used in place of a single sine wave input.  Also 

additional feedback compensation techniques can also be attempted to further lower the 

compensator gains.  Better knowledge of the plant limitations (i.e. saturation limits, slew 

angle limits), as well as an applicable noise model would make further investigation in 

this direction more feasible. 

 In addition, System Identification techniques can also be studied to lower the 

range of uncertainty in the plant model.  This research is guided more towards the study 

of individual system components.  Therefore, the issue here becomes how to relate the 

experimental data to the parameters of the system components.  Additionally, how 
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accurate are the system components to begin with.  For example, if the motor exhibits 

behavior or dynamics not seen in the frequency response. 

 There are a number of different research directions available from the conclusions 

of this investigation.  The most important are the investigation of system identification 

techniques and limitations and the investigation of new control concepts to optimize the 

time or frequency response of the system. 
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Appendix A. Nominal Plant Model 

A.1. Plant Model Block Diagram 

The actual spacecraft mounted antenna model used in this investigation is 

presented in transfer function form provided by the sponsor in a MatLab script file.  The 

provided model is used as the nominal plant.  It is assumed that the provided plant model 

is the creation of a SYS ID process.  This model is assumed to be what the plant is, even 

though the plant parameters provided still remain – to some degree – uncertain.  

The entire plant in block diagram form is shown in Figure A-1, where GTD(s) is 

the time delay transfer function located in the forward and feedback paths, Gmotor(s) is the 

motor transfer function,  Gstruct(s) is the structure transfer function, GARS(s) is the angle 

rate sensor transfer function, and GAAF(s) is the anti-aliasing filter transfer function. 

 

+ 
+ GTD(s) θ Σ 

d 

Gmotor(s) Gstruct(s) 

GARS(s) GAAF(s) GTD(s) s 

Torque 

Angle Rate 
Feedback 

Figure A-1: Actual Plant Model Block Diagram 
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A.2. Structure Transfer Functions 

The plant dynamics are given in transfer function form.  There are several 

individual components of the plant model, and each component has its own transfer 

function.  This sub-section explains each component and its transfer function. 

The bare structure provided is characterized by the natural frequencies of 20 

modes (ωn), and their corresponding damping ratios (ζ) and modal peaks (k).  Also 

included in the bare structure is the rigid body mode.  Given the above values and the 

following equations, a linear model of the entire structure is created. 

th flexible mode 2
, ,

( )
2

i
i

i n i n i

k sG s
s s 2ζ ω ω

=
+ +

      (A-1) 

rigid body 2

1( )G s
Js

=         (A-2) 

20

structure rigid body flexible mode, 
1

( ) ( ) G ( )i
i

G s G s
=

= + ∑ s      (A-3) 

In Equation A-2, J is the moment of inertia of the antenna’s rigid body.  From 

these equations, the bare space structure is modeled in a single transfer function.  It is 

important to note that these transfer functions relate the torque input to the pointing angle 

of the flexible structure.  Multiplying the transfer function by a derivative s relates the 

input torque to the slew rate of the antenna, which is measured by an onboard angle rate 

sensor. 

The flexible mode parameters, k, ωn, ζ are listed in Table A-1.  Figure A-2 shows 

the Bode plot of the structure transfer function.  Note the higher modal peaks in the 15-75 

Hz frequency band. 
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Flexible Mode k (rad/oz-in ×10-6) ωn  (Hz) ζ 
1 -1.5597 3.3 0.02 
2 0.0242 11.5 0.0025 
3 0.0255 15.5 0.0025 
4 0.0189 16.5 0.0025 
5 0.0720 19 0.0025 
6 0.2990 21 0.0025 
7 0.0909 24 0.0025 
8 0.0980 24.5 0.0025 
9 0.0419 28 0.0025 
10 0.1288 32 0.0025 
11 0.0808 34 0.0025 
12 0.0287 38 0.0025 
13 0.0784 41 0.0025 
14 0.1793 43 0.0025 
15 0.0642 48 0.0025 
16 0.0617 49 0.0025 
17 0.0408 56 0.0025 
18 0.01367 62 0.0025 
19 0.0676 70 0.0025 
20 -0.3620 76 0.0025 

Table A-1: Structure Transfer Function Parameters 

 

Figure A-2: Structure Bode Plots 
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A.3. Motor/Actuator Transfer Functions 

The motor takes a commanded input torque and gives a smoother output torque to 

the structure.  The motor/actuator has complicated dynamics.  The components of the 

motor are the zero-order-hold, the amplifier, and the actuator.  Their individual transfer 

functions are shown in Equations A-4 to A-6.  The total motor/actuator transfer function 

is the product of the three. 

3 2

120000( )
600 120000zoh

sG s
s s

=
+ + s

      (A-4) 

272.34375( )
2167actuatorG s

s
=

+
       (A-5) 

52.47( )
53amplifierG s

s
=

+
        (A-6) 

 Figure 3-6 shows the Bode plot of the motor transfer function.  Also included in 

the figure is the frequency response of a separate motor with a high gain amplifier.  This 

motor has an amplifier modeled as a second order transfer function.  For the purposes of 

this investigation, this motor is not used other than for open loop control experimentation 

discussed in Chapter 3.  Therefore, its structure and parameters are not further discussed. 

Note that the final value of the total low gain motor, that is its DC gain, is not 

equal to one.  Thus, the motor does not track the commanded input.  Therefore, the motor 

transfer function is multiplied by the inverse of Gmotor(0), such that 1 oz-in of input torque 

commanded will yield a steady-state output torque of 1 oz-in – see Equation A-7.  This is 

consistent with conventional flight control actuators, which are typically first order filters 

of the commanded input with a DC gain of unity.  This gain is especially important in the 

determination of the feedforward input torque signal – see Chapter 3. 
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( ) ( ) ( ) ( ),   8.037228motor m zoh actuator amplifier mG s k G s G s G s k= =    (A-7) 

A.4. Angle Rate Sensor Transfer Functions 

The angle rate sensor tracks the output of the structure (angle rate) at low 

frequencies and attenuates the high frequency noise.  Essentially, it is the relationship 

between the actual angle rate and the angle rate readings available for feedback, which, at 

high frequencies, may not match up.  The transfer function is shown in Equation A-8. 

 
1

1 1
628.3 680.2

ARSG
s s

=
⎛ ⎞⎛+ +⎜ ⎟⎜
⎝ ⎠⎝

⎞
⎟
⎠

      (A-8) 

 

Figure A-3: Angle Rate Sensor Bode Plot 
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A.5. Anti-Aliasing Filter Transfer Function 

The anti-aliasing filter restricts the bandwidth of the sensors’ output so that the 

sensor data can be properly processed by the digital controller.  From the transfer 

function below, it is evident that, the bandwidth of the anti-aliasing filter is 251.3 rad/s.  

Sensor data, mainly noise, of higher frequency will be attenuated by the filter. 

 
2

2

251.3
2(0.707)(251.3) 251.3AAFG

s s
=

+ +
     (A-9) 

 

Figure A-4: Anti-Alias Filter Bode Gain Plot 

Both the Anti-Alias Filter and the Angle Rate Sensor dynamics are low pass 

filters, with a limited bandwidth of roughly 30 Hz.  Conveniently, their bandwidth is 

around the same order as the dominant dynamics of the structure.  Therefore, care should 

be exercised not to utilize control inputs in the high frequency range. 
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A.6. Time Delays 

There are an assumed two time delays present in the plant, one in the forward 

loop, and one in the feedback path.  Both time delays are assumed to be 0.01 seconds.  

Whenever possible, the analysis of the Plant includes the true time delay transfer 

function, e-0.01s.  However, when the analysis did not allow the use of a pure time delay, 

the first order Pade approximation was used instead. 

 
1 0.005( )
1 0.005TD

sG s
s

−
=

+
        (A-10) 
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Appendix B. Basic Physics of Rigid Body/Flexible Appendage Models 

 A simple model was chosen to experiment with basic controllers to understand 

and predict the behavior of more complex models.  This was done to understand the 

physics of the basic rigid body with a flexible appendage. 

B.1. Derivation of Simple Plant Model 

 Before the actual plant model was considered, the antenna was assumed to have a 

center rigid body and a flexible appendage.  To linearize the model, the appendage is 

considered to be made up of n inertial dumbbells; each inertial mass is attached to the 

next with torsional springs and dampers.  The equations of motion for the model are 

similar to that of a translational n mass-spring-damper system.  Refer to Figure 1-2 for an 

illustration.  Rotational dynamics are similar in structure to translational dynamics, so as 

common with translational spring-mass-damper systems, the equations of motion are 

linearized and expressed in state-space with a state vector of physical states – see 

Equation B-1. 

x Ax Bu= +          (B-1) 

 The equations of motion are derived as follows: 

0 0 0M J θ=∑          (B-2) 

Here, J0 is the moment of inertia of the center rigid body.  M0 is the moment about 

the longitudinal axis of the body.  Consider the center rigid body equations of motion, 

0 0 1 0 1 1 0 1( ) (J T k d )θ θ θ θ θ= − − − −       (B-3) 
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where θ0 is the attitude of the rigid body, θ1 is the attitude of the first element of the 

flexible appendage, T is the torque acting on the center mass, and k1 and d1 are the torsion 

spring and damping coefficients, respectively.  Following this same pattern, the equations 

of motion for the first n-1 elements that make up the appendage can be represented as: 

1 1 1 1 1 1( ) ( ) ( ) (i i i i i i i i i i i i i iJ k d k d )θ θ θ θ θ θ θ θ θ− − + + + += − + − − − − −     (B-4) 

The nth flexible element has the following equation of motion: 

1 1( ) (n n n n n n n nJ k d )θ θ θ θ θ− −= − + −       (B-5) 

Now, assuming the following equalities: 

1) k1 = k2 = … = kn = k 

2) d1 = d2 = … = dn = d 

3) J1 = J2 = … = Jn = J << J0 

Equations B-3, B-4, and B-5 yield: 

0 0 0 0 1 1J k d k dθ θ θ θ θ= − − + + + T

1

      (B-6) 

1 1 12 2i i i i i i iJ k d k d k dθ θ θ θ θ θ θ− − += + − − + + +

n

    (B-7) 

1 1n n n nJ k d k dθ θ θ θ− −= + − − θ       (B-8) 

Now, consider a column vector x, composed of physical variables of the system: 

1
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A state-space model with the state vector x can be constructed in the form shown 

in Equation B-1. 

 

Using the definitions 
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, 

the dynamics matrix, A, is a 2(n+1) square matrix and is obtained as shown below: 

0 0 0 0
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      (B-9) 

Upon further evaluation of H0, it can be assumed that J0 >> k and J0 >> d.  

Effectively, this reduces H0 to the matrix: 

0

0 1
0 0

H ⎡
= ⎢

⎣ ⎦
         (B-10) 
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This approximation of H0 yields two eigenvalues of the complete A matrix with 

the value of zero.  This approximation makes sense, since H0 models the rigid body 

portion of the structure.  Physically speaking, a torque is commanded to the rigid body 

and the rigid body responds as an angle which is the second derivative of the commanded 

torque; hence, the two eigenvalues at zero. 

A Bode plot of the simple model is shown in Figure B-1.  The model 

approximated the appendage as 30 inertial masses. 

 

Figure B-1: Bode Plot of Simple Plant Model 

 The Bode diagram shows that all of the prominent dynamics of the model occur at 

frequencies less than 1 rad/s.  Low frequency dynamics are consistent with most of the 

literature studied in the field of large flexible space structures.  The typical control 
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problem that arises is that these dynamics occur at low frequencies below the controller 

bandwidth. 

B.2. Open Loop Experimentation with the Model 

The prominent dynamics of the simple model are shown to be less than 1 rad/s.  

Experimentation with the simple structure is conducted to understand the dynamics 

which would arise when trying to slew the structure.  Namely, it is important to 

understand what inputs would excite excessive vibrations in the structure.  This 

information is valuable to applications toward the actual plant in this investigation. 

 The same two types of torque inputs given to the antenna structure nominal plant 

are used in the open loop experimentation with this simple model.  See Chapter 3 for an 

explanation of these inputs. 

The structure model was first put under the doublet and sine wave inputs spread 

over time durations of 2, 4, 6, 10, 16, and 20 seconds.  The time response did not show 

evidence of excessive vibrations from the system unless the input duration was long.  

Shown below are some of the time responses from the bare structure.  The both types of 

inputs with durations of two seconds did not induce any excessive vibrations, and this 

was true for most of the time responses that were investigated.  And this was especially 

true for inputs with short time durations.   
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Figure B-2: Time Domain Response to a Doublet Input with a 2 Second Duration 

 

Figure B-3: Time Domain Response to a Sine Input with a 2 Second Duration 

As the time durations increased, more vibration dynamics were detected.  This is 

evident in the time response plot with a twenty second input duration.  The slew rate does 

not return to zero as it did with the two second input.  The slew rate would eventually go 

back to zero; however, judging from the Bode plots, the prominent dynamics indicated 

that this would occur over several hundred seconds after the input ended.  In any case, the 
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final slew angle was around the area of 100 radians, which is well beyond any practical 

use.  To slew 180 degrees (π radians), the input signal duration would be about 4.5 

seconds.  In this case, the vibrations could be easily damped by an integral controller. 

 

Figure B-4: Time Domain Response to a Doublet Input with a 20 Second Duration 

 

Figure B-5: Time Domain Response to a Sine Input with a 20 Second Duration 
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The vibrations inherent in this structure are illustrated in the next figure.  From 

the bode plots, the most prominent dynamic response occurs at a frequency of about 3.7 x 

10-2 rad/s.  This roughly translates to a period of 170 seconds.   The time response to a 

sine wave input with a duration of 170 seconds is shown below.  The response shows 

prominent vibrations with little to no evidence of damping. 

 

Figure B-6: Time Domain Response to a Sine Input with a 170 Second Duration 

Comparing the structure frequency responses in Figure B-1 and Figure A-2, the 

prominent low frequency dynamics in the derived physical model are absent from the 

antenna structure model dynamics.  It is important to note that the two models can not be 

directly compared to each other.  The simple model relates an angle output to a torque 

input and the truth model relates an angle rate to a torque input.  Nevertheless, the 

effective differences in the Bode plots are a phase shift of 90 degrees and a slope change 

of 20 dB per decade, thus the prominent dynamics displayed in either of the plots are still 

comparable. 

94 



Most of the prominent dynamics of the simple model occurred at frequencies 

lower than 1 rad/sec, whereas, the prominent dynamics of the truth model occurred at 

frequencies greater than 30 rad/sec.  Also, the derived model natural frequencies were 

spaced far apart and the antenna plant flexible modes were spaced very close together.  

For these reasons, it can be concluded that the assumptions made for the simple model do 

not hold true for the actual antenna.  However, the cause and effect principles do remain 

the same since the physics remain the same, and can be better viewed in a state-space 

model rather than in a transfer function.  For this reason, the simple model is used in open 

loop experimentation to research desirable slewing commands, but no attempt to create a 

desirable feedforward controller or a feedback compensator for the simple model is 

considered in this investigation. 
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